View Profile


Peer Reviewed Papers, Books, Chapters

Year Title Citation Authors Review type Summary Keywords File filename File mime type
1. Multifunctional nanoparticles for biomedical applications have shown extraordinary potential as contrast agents in various bioimaging modalities, near-IR photothermal therapy, and for light-triggered therapeutic release processes. Pubmed Multifunctional nanoparticles for biomedical applications have shown extraordinary potential as contrast agents in various bioimaging modalities, near-IR photothermal therapy, and for light-triggered therapeutic release processes. Over the past several years, numerous studies have been performed to synthesize and enhance MRI contrast with nanoparticles. However, understanding the MRI enhancement mechanism in a multishell nanoparticle geometry, and controlling its properties, remains a challenge. To systematically examine MRI enhancement in a nanoparticle geometry, we have synthesized MRI-active Au nanomatryoshkas. These are Au core-silica layer-Au shell nanoparticles, where Gd(III) ions are encapsulated within the silica layer between the inner core and outer Au layer of the nanoparticle (Gd-NM). This multifunctional nanoparticle retains its strong near-IR Fano-resonant optical absorption properties essential for photothermal or other near-IR light-triggered therapy, while simultaneously providing increased T1 contrast in MR imaging by concentrating Gd(III) within the nanoparticle. Measurements of Gd-NM revealed a strongly enhanced T1 relaxivity (r1 ∼ 24 mM-1⋅s-1) even at 4.7 T, substantially surpassing conventional Gd(III) chelating agents (r1 ∼ 3 mM-1⋅s-1 at 4.7 T) currently in clinical use. By varying the thickness of the outer gold layer of the nanoparticle, we show that the observed relaxivities are consistent with Solomon-Bloembergen-Morgan (SBM) theory, which takes into account the longer-range interactions between the encapsulated Gd(III) and the protons of the H2O molecules outside the nanoparticle. This nanoparticle complex and its MRI T1-enhancing properties open the door for future studies on quantitative tracking of therapeutic nanoparticles in vivo, an essential step for optimizing light-induced, nanoparticle-based therapies. Au nanoparticle; T1 MRI contrast; gadolinium; relaxivity
2. OBJECTIVE: The aim of this study was to compare the early efficacy and survivals of induction regimens for transplant-eligible patients with untreated multiple myeloma. Pubmed OBJECTIVE: The aim of this study was to compare the early efficacy and survivals of induction regimens for transplant-eligible patients with untreated multiple myeloma. MATERIALS AND METHODS: A comprehensive literature search in electronic databases was conducted for relevant randomized controlled trials (RCTs). Eligible studies were selected according to the predefined selection criteria, before they were evaluated for methodological quality. Basic characteristics and data for network meta-analysis (NMA) were extracted from included trials and pooled in our meta-analysis. The end points were the overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). RESULTS: A total of 14 RCTs that included 4,763 patients were analyzed. The post-induction ORR was higher with bortezomib plus thalidomide plus dexamethasone (VTD) regimens, and VTD was better than the majority of other regimens. For OS, VTD plus cyclophosphamide (VTDC) regimens showed potential superiority over other regimens, but the difference was not statistically significant. The PFS was longer with thalidomide plus doxorubicin plus dexamethasone (TAD) regimens for transplant-eligible patients with newly diagnosed multiple myeloma (NDMM). CONCLUSION: The NMA demonstrated that the VTD, VTDC, and TAD regimens are most beneficial in terms of ORR, OS, and PFS for transplant-eligible patients with NDMM, respectively. induction therapies; multiple myeloma; network meta-analysis; newly diagnosed; transplant-eligible
3. CCCTC-binding factor (CTCF) is a DNA-binding protein that interacts with a large number of highly divergent target sequences throughout the genome. Pubmed CCCTC-binding factor (CTCF) is a DNA-binding protein that interacts with a large number of highly divergent target sequences throughout the genome. It is implicated in a variety of functions, including chromatin organization and transcriptional control. The functional role of CTCF in tumour pathogenesis remains elusive. We showed that CTCF is frequently upregulated in a subset of primary hepatocellular carcinomas (HCCs) as compared with non-tumoural liver. Overexpression of CTCF was associated with shorter disease-free survival of patients. Short hairpin RNA (shRNA)-mediated suppression of CTCF inhibited cell proliferation, motility and invasiveness in HCC cell lines; these effects were correlated with prominent reductions in the expression of telomerase reverse transcriptase (TERT), the shelterin complex member telomerase repeat-binding factor 1, and forkhead box protein M1 (FOXM1). In contrast, upregulation of CTCF was positively correlated with FOXM1 and TERT expression in clinical HCC biopsies. Depletion of CTCF resulted in reduced motility and invasiveness in HCC cells that could be reversed by ectopic expression of FOXM1, suggesting that FOXM1 is one of the important downstream effectors of CTCF in HCC. Reporter gene analysis suggested that depletion of CTCF is associated with reduced FOXM1 and TERT promoter activity. Chromatin immunoprecipitation (ChIP)-polymerase chain reaction (PCR) analysis further revealed occupancy of the FOXM1 promoter by CTCF in vivo. Importantly, depletion of CTCF by shRNA significantly inhibited tumour progression and metastasis in HCC mouse models. Our work uncovered a novel functional role of CTCF in HCC pathogenesis, which suggests that targeting CTCF could be further explored as a potential therapeutic strategy for HCC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. CTCF; FOXM1; HCC; TERT; chromatin immunoprecipitation; metastasis
4. Several previous meta-analyses show a consistent inverse association between nut consumption and all-cause mortality, but the associations with cause-specific mortality remain uncertain. Pubmed Several previous meta-analyses show a consistent inverse association between nut consumption and all-cause mortality, but the associations with cause-specific mortality remain uncertain. A recent meta-analysis on nut consumption and multiple health outcomes combined incidence and mortality outcomes across most of the analyses, which may have introduced heterogeneity across studies. We conducted an updated meta-analysis to evaluate the nut-mortality association. We searched PubMed and EMBASE and we contacted authors for additional data. The final analyses included 18 prospective studies. The random-effects summary RRs for high compared with low nut consumption were 0.81 (95% CI: 0.78-0.84) for all-cause mortality (18 studies with 81 034 deaths), 0.75 (95% CI: 0.71-0.79) for CVD mortality (17 studies with 20 381 deaths), 0.73 (95% CI: 0.67-0.80) for CHD mortality (14 studies with 10 438 deaths), 0.82 (95% CI: 0.73-0.91) for stroke mortality (13 studies with 4850 deaths) and 0.87 (95% CI: 0.80-0.93) for cancer mortality (11 studies 21 353 deaths). These results were broadly consistent within subgroups according to various study and population characteristics and within sensitivity analyses that took into account potential confounders. Peanut (5 studies) and tree nut (3 studies) consumption were similarly associated with mortality risks. Dose-response analyses suggested evidence for nonlinear associations between nut consumption and mortality (P-nonlinearity <0.001 for all outcomes except cancer mortality), with mortality risk levelling off at the consumption of about 3 servings per week (12 g d-1). Our findings suggest that nut consumption is associated with reduced all-cause and cause-specific mortality, with the strongest reduction for CHD mortality. Both tree nuts and peanuts may lower mortality and most of the survival benefits may be achieved at a relative low level of nut consumption.
5. Ovarian cancer-associated antigen 12 (OVA12) was first identified in an ovarian carcinoma complementary DNA (cDNA) expression library and has been shown to play an important role in tumor growth. Pubmed Ovarian cancer-associated antigen 12 (OVA12) was first identified in an ovarian carcinoma complementary DNA (cDNA) expression library and has been shown to play an important role in tumor growth. Here, we found that overexpression of OVA12 accelerated tumor growth in different tumor cells, whereas OVA12 depletion was associated with the opposite effect. Moreover, knocking down OVA12 led to a significant increase in the protein levels of p53, and the overexpression of OVA12 significantly decreased endogenous p53 levels. In addition, OVA12 stimulated p53 polyubiquitination and degradation by the proteasome and promoted tumor growth at least partially through the p53 pathway. Taken together, these results indicate that OVA12 is a negative regulator of p53 and that inhibition of OVA12 expression might serve as a therapeutic target to restore tumor suppression. OVA12; p53; tumor growth
6. The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. Pubmed The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The 10 µg/ml of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or 10 µg/ml of PA also had no effect on MRC-5 normal cells. PA-L (5 µg/ml) and PA-H (10 µg/ml) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res (5 µg/ml)+PA-H (10 µg/ml) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, NF-κB, Bcl-2, Bcl-xL, procollagen I, collagen I, collagen III and CTGF, TNF-α, IL-1β, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, IκB-α, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA. A549; Cancer; Gene; Paclitaxel; Resveratrol
7. Colorectal cancer (CRC) has been the fourth leading cause of cancer-related mortality worldwide. Pubmed Colorectal cancer (CRC) has been the fourth leading cause of cancer-related mortality worldwide. Owing to clonal evolution and selection, CRC treatment needs multimodal therapeutic approaches and due monitoring of tumor progression and therapeutic efficacy. Liquid biopsy, involving the use of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes, may offer a promising noninvasive alternative for diagnosis and for real-time monitoring of tumor evolution and therapeutic response compared to traditional tissue biopsy. Monitoring of the disease processes can enable clinicians to readily adopt a strategy based on optimal therapeutic decision-making. This article provides an overview of the significant advances and the current clinical and biological significance of CTCs, ctDNA, and exosomes in CRC, as well as a comparison of the main merits and demerits of these three components. The hurdles that need to be resolved and potential directions to be followed with respect to liquid biopsies for detection and therapy of CRC are also discussed. circulating tumor DNA (ctDNA); circulating tumor cells (CTCs); colorectal cancer (CRC); exosomes; liquid biopsy
8. The poor clinical outcome and prognosis of esophageal squamous cell carcinoma (ESCC) is mainly attributed to its highly invasive and metastatic nature, making it urgent to further elicit the molecular mechanisms of the metastasis of ESCC. Pubmed The poor clinical outcome and prognosis of esophageal squamous cell carcinoma (ESCC) is mainly attributed to its highly invasive and metastatic nature, making it urgent to further elicit the molecular mechanisms of the metastasis of ESCC. The function of each polycomb chromobox (CBX) protein in cancer is cell-type-dependent. Although CBX8 has been reported to promote the esophageal squamous cell carcinoma (ESCC) tumorigenesis, its role in ESCC metastasis has not been explored yet. In this study, we report that the inhibition of cell migration, invasion, and metastasis in ESCC requires CBX8-mediated repression of Snail, a key transcription factor that induces epithelial-to-mesenchymal transition (EMT), and that CBX8 inversely correlated with Snail in the ESCC tissues. Moreover, this novel function of CBX8 is dependent on its binding with the Snail promoter, which in turn suppresses the transcription of Snail. Collectively, CBX8 may play paradoxical roles in ESCC, inhibiting metastasis while promoting cell proliferation. CBX8; EMT; Esophageal squamous cell carcinoma.; Snail; Tumor metastasis
9. Morusin is a pure extract from the root bark of Morus australis (Moraceae). Pubmed Morusin is a pure extract from the root bark of Morus australis (Moraceae). In recent years, morusin has been reported to exhibit anti-tumor biological activity in some types of human cancers through different mechanisms. Here, we attempted to investigate the inhibitory effect and mechanism of morusin on gastric cancer. Morusin markedly inhibited gastric cancer cell proliferation by down-regulating CDKs and Cyclins, such as CDK2, CDK4, Cyclin D1 and Cyclin E1. Additionally, morusin suppressed tumor growth in vitro and in vivo. Up-regulation of CDKs and Cyclins in gastric cancer cells was induced by c-Myc binding at the E-Box regions of CDKs and the Cyclin promoter. In addition, compared with the control group, the morusin-treated group showed reduced expression of c-Myc and c-Myc protein binding at the E-Box regions. Based on these results, we overexpressed c-Myc in gastric cancer cells and found that overexpressing c-Myc rescued morusin-induced inhibition of cell proliferation and tumor growth. These results suggest that morusin inhibits cell proliferation and tumor growth by down-regulating c-Myc in human gastric cancer. c-Myc; cell proliferation; gastric cancer; morusin; tumor growth
10. PURPOSE: Cisplatin plus gemcitabine (GEM) is a standard regimen for the first-line treatment of advanced non-small cell lung cancer. Pubmed PURPOSE: Cisplatin plus gemcitabine (GEM) is a standard regimen for the first-line treatment of advanced non-small cell lung cancer. The aim of this study was to prepare biocompatible and biodegradable polymeric prodrugs and construct nanoparticles (NPs) with layer-by-layer (LbL) technique. METHODS: Platinum (Pt) (IV) complex with a carboxyl group was conjugated to the amino group of chitosan (CH), resulting in a CH-Pt conjugation with positive charge. GEM with amino group was conjugated to the carboxyl group of hyaluronic acid (HA), resulting in a HA-GEM conjugation with negative charge. Novel LbL NPs consisting of the CH-Pt core and the HA-GEM layer, named as HA-GEM/CH-Pt NPs, were constructed. The physicochemical properties of the HA-GEM/CH-Pt NPs were investigated. In vitro cytotoxicity against human non-small lung cancer cells (NCl-H460 cells) was investigated, and in vivo antitumor efficiency was evaluated on mice bearing NCl-H460 cells xenografts. RESULTS: HA-GEM/CH-Pt NPs have a size of about 187 nm, a zeta potential value of -21 mV and high drug encapsulation efficiency of 90%. The drug release of HA-GEM/CH-Pt NPs exhibited a sustained behavior. HA-GEM/CH-Pt NPs could significantly enhance in vitro cytotoxicity and in vivo antitumor effect against lung cancer animal model compared to the single-drug-loaded NPs and free drug solutions. CONCLUSION: The results demonstrated that the HA-GEM/CH-Pt NPs might be a promising system for the synergetic treatment of lung carcinoma. cisplatin; combination chemotherapy; gemcitabine; layer-by-layer technology; lung cancer
11. The DNA damage response is critical for maintaining genome integrity and preventing damage to DNA due to endogenous and exogenous insults. Pubmed The DNA damage response is critical for maintaining genome integrity and preventing damage to DNA due to endogenous and exogenous insults. Mitomycin C (MMC), a potent DNA cross-linker, is used as a chemotherapeutic agent because it causes DNA inter-strand cross-links (DNA ICLs) in cancer cells. While many microRNAs, which may serve as oncogenes or tumor suppressors, are grossly dysregulated in human cancers, little is known about their roles in MMC-treated lung cancer. Here, we report that miR-128-3p can attenuate repair of DNA ICLs by targeting SPTAN1 (αII Sp), resulting in cell cycle arrest and promoting chromosomal aberrations in lung cancer cells treated with MMC. Using computational prediction and experimental validation, SPTAN1 was found to be a conserved target of miR-128-3p. We then found that miR-128-3p caused translational inhibition of SPTAN1, reducing its protein level. SPTAN1 repression via miR-128-3p also induced cell cycle arrest and chromosomal instability. Additionally, miR-128-3p significantly influenced interaction of the αII Sp/FANCA/XPF complex, thus limiting DNA repair. In summary, the results demonstrate that miR-128-3p accelerates cell cycle arrest and chromosomal instability in MMC-treated lung cancer cells by suppressing SPTAN1, and these findings could be applied for adjuvant chemotherapy of lung cancer. DNA repair; MicroRNA; lung cancer; mitomycin C; spectrin
12. With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Pubmed With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine. adenoviral vector; adenovirus; cell therapy; gene delivery; gene therapy; gene transfer; non-viral vectors; oncolytic virus; personalized medicine; regenerative medicine; tissue engineering; vaccine development; viral vectors
13. Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer, but novel biomarkers for early diagnosis are lacking. Pubmed Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer, but novel biomarkers for early diagnosis are lacking. Extensive effort has been exerted to identify miRNA biomarkers in LUAD. Unfortunately, high inter-lab variability and small sample sizes have produced inconsistent conclusions in this field. To resolve the above-mentioned limitations, we performed a comprehensive analysis based on LUAD miRNome profiling studies using the robust rank aggregation (RRA) method. Moreover, miRNA-gene interaction network, pathway enrichment analysis and Kaplan-Meier survival curves were used to investigate the clinical values and biological functions of the identified miRNAs. A total of six common differentially expressed miRNAs (DEMs) were identified in LUAD. An independent cohort further confirmed that four miRNAs (miR-21-5p, miR-210-3p, miR-182-5p and miR-183-5p) were up-regulated and two miRNAs (miR-126-3p and miR-218-5p) were down-regulated in LUAD tissues. Pathway enrichment analysis also suggested that the above-listed six DEMs may affect LUAD progression via the estrogen signaling pathway. Survival analysis based on the TCGA dataset revealed the potential prognostic values of six DEMs in patients with LUAD (P-value<0.01). In conclusion, we identified a panel of six miRNAs from LUAD using miRNome profiling studies. Our results provide evidence for the use of these six DEMs as novel diagnostic and prognostic biomarkers for LUAD patients. lung adenocarcinoma; microRNAs; robust rank aggregation
14. This study aimed to investigate the protective potential of genistein in dextran sulfate sodium (DSS)-induced colonic injury in vitro and in vivo models. Pubmed This study aimed to investigate the protective potential of genistein in dextran sulfate sodium (DSS)-induced colonic injury in vitro and in vivo models. The results showed that DSS exposure caused growth suppression, colonic injury, inflammation, and barrier dysfunction in mice. Dietary genistein alleviated DSS-caused colonic injury via reducing colonic weight, rectal bleeding, and diarrhea ratio. Meanwhile, genistein reduced colonic inflammatory response via downregulating cytokines expression and improved colonic permeability and barrier in DSS-challenged mice. In Caco-2 cells, genistein improved cell viability and cellular permeability and inhibited DSS-induced activation of TLR4/NF-κB signal. In conclusion, genistein alleviated DSS-caused colonic injury, inflammation, and gut dysfunction, which might be associated with the TLR4/NF-κB signal. NF-κB; barrier; genistein; inflammation; mice
15. Human epidermal growth factor receptor 3 (HER3) is closely involved in tumor progression and is an important target of therapy. Pubmed Human epidermal growth factor receptor 3 (HER3) is closely involved in tumor progression and is an important target of therapy. To evaluate the prognostic significance of HER3 in malignant solid tumors, we searched the PUBMED, EMBASE and CNKI databases for relevant studies written in English or Chinese up to December 2015. Fifteen studies comprising 2964 patients were identified. The HER3+ rate ranged from 9.0-75.1 % in malignant solid tumors: 30.3-75.1 % in breast cancers, 51.1-74.5 % in colorectal cancers, 13.7-59.0 % in gastric cancers, and 54.5-74.4 % in cervical cancers. For patients with a malignant solid tumor, the death risk was higher for those with a HER3+ tumor than for those with a HER3- tumor (HR 1.60, 95% CI: 1.27 - 2.02, P < 0.001). Subgroup analysis revealed this was also the case for patients with digestive or gastric cancer (HR 1.78, P < 0.001; HR 2.18, P < 0.001). By contrast, HER3 had no prognostic significance in colorectal or breast cancer (HR 1.52, P = 0.296; HR 1.23, P = 0.108). HER3+ is thus associated with poor survival in overall and in gastric cancer. The prognostic significance of HER3+ in other tumors is uncertain and deserves further study. HER3; immunohistochemistry; malignant tumors; molecular markers; prognosis
16. Senescent stromal cells support the development of prostate cancer and are considered potential therapeutic targets. Pubmed Senescent stromal cells support the development of prostate cancer and are considered potential therapeutic targets. This research evaluated the regulatory effects of ginsenoside Rg3 on the senescence of prostatic stromal cells pre-incubated in medium supplemented with 0.5% fetal bovine serum. The results revealed that ginsenoside Rg3 decreased the number of stromal cells positively stained with a senescent cell marker (senescence-associated β-galactosidase). Ginsenoside Rg3 also increased the viability of stromal cells and promoted cell cycle transition from G0/G1 to S phase, as well as inhibited the carcinoma-associated fibroblast-like phenotype in prostate stromal cells, through the up-regulation of smooth muscle cell markers SM22 and smooth muscle myosin heavy chain. Conditioned medium collected from stromal cells treated with ginsenoside Rg3 exhibited an attenuated effect on the promotion of prostate cancer cell migration compared with conditioned medium from stromal cells without Rg3 treatment. Down-regulation of interleukin 8 (IL-8) in a dose- and time-dependent manner was observed in ginsenoside Rg3-treated stromal cells, and over-expression or addition of IL-8 reversed the anti-senescence role of Rg3 in prostate stromal cells. Furthermore, ginsenoside Rg3 down-regulated IL-8 expression by decreasing the reactive oxygen species level in prostatic stromal cells and reducing the transcriptional activity of IL-8 promoter by damping the transcription factors C/EBP β and p65 binding to IL-8 promoter. Our research revealed that ginsenoside Rg3 was able to inhibit prostate stromal cell senescence by down-regulating IL-8 expression. The results suggest a potential value for ginsenoside Rg3 in prostate cancer treatment through the targeting of pro-carcinogenic senescent stromal cells. Gerotarget; IL-8; ginsenoside Rg3; prostate cancer; senescence; stromal cell
17. Esophageal carcinoma (EC) is a malignancy with high metastatic potential. Pubmed Esophageal carcinoma (EC) is a malignancy with high metastatic potential. Chromosomal helicase/ATPase DNA binding protein 1-like (CHD1L) gene is a newly identified oncogene located at Chr1q21, and it is amplified in many solid tumors. However, the status of CHD1L protein expression in EC and its clinical significance is uncertain. This study was designed to investigate the significance of CHD1L expression in human EC and its biological function in EC cells. The expression of CHD1L was examined by immunohistochemistry in 191 surgically resected ECs. The associations between CHD1L expression and clinical pathological parameters and the prognostic value of CHD1L were analyzed. Western blot analysis showed that CHD1L was overexpressed in EC cell lines. In addition, positive CHD1L expression was strongly related to advanced clinical stage (P<0.01), and lymph node metastasis (P<0.01) of EC. The Kaplan-Meier curve indicated that high expression of CHD1L may result in poor prognosis of EC patients (P<0.01), and multivariate analysis showed that CHD1L overexpression was an independent predictor of overall survival. Furthermore, suppression of CHD1L in EC cells increased apoptosis and decreased cell proliferation invasion ability. Our results suggest that CHD1L is a target oncogene with the potential to serve as a novel prognostic biomarker in EC pathogenesis. CHD1L protein; apoptosis; esophageal carcinoma; migration; prognosis
18. TOB1, a member of the BTG/TOB protein family, inhibits tumor cell proliferation. Pubmed TOB1, a member of the BTG/TOB protein family, inhibits tumor cell proliferation. We previously observed down-regulation and phosphorylation of TOB1 in gastric cancer (GC). Here, we examined the subcellular distribution and clinical significance of TOB1 expression and phosphorylation in GC. Immunohistochemical analysis of 341 primary GC and corresponding normal gastric tissue samples demonstrated that nuclear TOB1 expression was lower in GC than normal tissue (80.4% vs. 92.4%), and decreased nuclear TOB1 expression correlated with high TNM stage. By contrast, phosphorylation of nuclear TOB1 was higher in GC than normal gastric tissue (66.0% vs. 36.4%), and was associated with poorly differentiated and high TNM stage tumors. Patients with intestinal type GC and increased nuclear TOB1 phosphorylation had poor overall survival. Multivariate survival analysis indicated the nuclear concentration of phosphorylated TOB1 was an independent prognostic factor for intestinal type GC. Overexpression of TOB1 containing mutations in its nuclear export signal inhibited GC cell proliferation, migration, and invasion compared to cells expressing TOB1 with the nuclear localization signal. Thus, decreased TOB1 expression and increased phosphorylation of nuclear TOB1 is associated with aggressive tumor behavior and poor prognosis in intestinal type GC. Additionally, TOB1 nuclear retention is critical for its anti-proliferative activity. TOB-1; anti-proliferative activity; gastric cancer; p-TOB1; subcellular localization
19. Background: Cell recognition molecule L1 (L1) plays an important role in cancer cell differentiation, proliferation, migration and survival, but its mechanism remains unclear. Pubmed Background: Cell recognition molecule L1 (L1) plays an important role in cancer cell differentiation, proliferation, migration and survival, but its mechanism remains unclear. Methodology/Principal: Our previous study has demonstrated that L1 enhanced cell survival and migration in neural cells by regulating cell surface glycosylation. In the present study, we show that L1 affected cell migration and survival in CHO (Chinese hamster ovary) cell line by modulation of sialylation and fucosylation at the cell surface via the PI3K (phosphoinositide 3-kinase) and Erk (extracellularsignal-regulated kinase) signaling pathways. Flow cytometry analysis indicated that L1 modulated cell surface sialylation and fucosylation in CHO cells. Activated L1 upregulated the protein expressions of ST6Gal1 (β-galactoside α-2,6-sialyltransferase 1) and FUT9 (Fucosyltransferase 9) in CHO cells. Furthermore, activated L1 promoted CHO cells migration and survival as shown by transwell assay and MTT assay. Inhibitors of sialylation and fucosylation blocked L1-induced cell migration and survival, while decreasing FUT9 and ST6Gal1 expressions via the PI3K-dependent and Erk-dependent signaling pathways. Conclusion : L1 modulated cell migration and survival by regulation of cell surface sialylation and fucosylation via the PI3K-dependent and Erk-dependent signaling pathways. CHO cells.; Cell adhesion molecule L1; Fucosylation; Glycosylation; Sialylation
20. PURPOSE: Methotrexate is widely used in chemotherapy for a variety of malignancies. Pubmed PURPOSE: Methotrexate is widely used in chemotherapy for a variety of malignancies. However, severe toxicity, poor pharmacokinetics, and narrow safety margin of methotrexate limit its clinical application. The aim of this study was to develop sustained-release methotrexate-loaded implants and evaluate antitumor activity of the implants after intratumoral implantation. MATERIALS AND METHODS: We prepared the implants containing methotrexate, poly(D,L-lactide-co-glycolide), and polyethylene glycol 4000 with the melt-molding technique. The implants were characterized with regards to drug content, morphology, in vitro, and in vivo release profiles. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were carried out to investigate the physicochemical properties of the implants. Furthermore, the antitumor activity of the implants was tested in a sarcoma 180 mouse model. RESULTS: The implants were prepared as solid rods. Scanning electron microscopy images showed a smooth surface of the implant, suggesting that methotrexate was homogeneously dispersed in the polymeric matrix. The results of DSC and FTIR indicated that no significant interaction between methotrexate and the polymer was observed in the implants. Both in vitro and in vivo release profiles of the implants were characterized by burst release followed by sustained release of methotrexate. Intratumoral implantation of methotrexate-loaded implants could efficiently delay tumor growth. Moreover, an increase in the dose of implants led to a higher tumor suppression rate without additional systemic toxicity. CONCLUSION: These results demonstrate that methotrexate-loaded implants had significant antitumor efficacy in a sarcoma 180 mouse model without dose-limiting side effects, and suggest that the implants could be potentially applied as an intratumoral delivery system to treat cancer. implant; intratumoral chemotherapy; methotrexate; poly(D,L-lactide-co-glycolide); sustained release
21. The efficacy of RNA interference (RNAi)-based cancer gene therapy is limited by its unexpected side effects, thus necessitating a strategy to precisely trigger conditional gene knockdown. Pubmed The efficacy of RNA interference (RNAi)-based cancer gene therapy is limited by its unexpected side effects, thus necessitating a strategy to precisely trigger conditional gene knockdown. In this study, we engineered a novel photoactivatable RNAi system, named as polyetherimide-modified single-wall carbon nanotube (PEI-SWNT)/pHSP-shT, that enables optogenetic control of targeted gene suppression in tumor cells. PEI-SWNT/pHSP-shT comprises a stimulus-responsive nanocarrier (PEI-SWNT), and an Hsp70B'-promoter-driven RNAi vector (pHSP-shT). In response to near-infrared (NIR) light irradiation, heating of PEI-SWNT in breast MCF-7 cells triggered gene knockdown targeting human telomerase reverse transcriptase through RNAi, with the gene-knockdown activity capable of being switched off by extinguishing the NIR. Furthermore, we demonstrated that the photoactivatable RNAi system exhibited higher antitumor activity by combining gene therapy and photothermal therapy, both in vitro and in vivo. Optogenetic control of RNAi based on an NIR-activated nanocarrier will potentially facilitate improved understanding of molecular-targeted gene therapy in human malignant tumors. Hsp70B′ promoter; RNAi; SWNT; near-infrared light response
22. Expression of ZFAS1, a newly identified long noncoding RNA (lncRNA), is dysregulated in several types of cancer. Pubmed Expression of ZFAS1, a newly identified long noncoding RNA (lncRNA), is dysregulated in several types of cancer. Here we assessed the prognostic value of ZFAS1 in solid tumors. A comprehensive literature search was performed by screening the PubMed, EMBASE, MEDLINE, Cochrane Library, CNKI, and Wanfang databases. A total of 874 patients from 10 studies were included. The pooled analysis demonstrated that patients with high ZFAS1 expression had a significantly shorter overall survival (OS) (HR, 1.58; 95% CI, 1.28-1.97; P < 0.001) and recurrence-free survival (RFS) (HR, 1.90; 95% CI, 1.29-2.79; P = 0.001). Moreover, elevated ZFAS1 expression correlated with tumor size, tumor-node-metastasis (TNM) stage, and lymph node metastasis (LNM). These results demonstrate that increased ZFAS1 expression correlates with a poor prognosis in cancer patients, which suggests ZFAS1 might be useful as a potential prognostic biomarker in patients with solid tumors. ZFAS1; cancer; long noncoding RNA; meta-analysis; prognosis
23. Development of chemoresistance is a persistent problem during cancer treatment. Pubmed Development of chemoresistance is a persistent problem during cancer treatment. Long non-coding RNAs (LncRNAs) are currently emerging as an integral functional component of the human genome and as critical regulators of cancer development and progression. In the present study, we investigated the role and molecular mechanism of H19 lncRNA in chemoresistance development by using doxorubicin (Dox) resistance in breast cancer cells as a model system. H19 lncRNA expression was significantly increased in anthracycline-treated and Dox-resistant MCF-7 breast cancer cells. This H19 overexpression was contributed to cancer cell resistance to anthracyclines and paclitaxel as knockdown of H19 lncRNA by a specific H19 shRNA in Dox-resistant cells significantly improved the cell sensitivity to anthracyclines and paclitaxel. Furthermore, gene expression profiling analysis revealed that a total of 192 genes were associated with H19-mediated Dox resistance. These genes were enriched in multiple KEGG pathways that are related to chemoresistance. Using genetic and pharmacological approaches, we demonstrated that MDR1 and MRP4 were major effectors of H19-regulated Dox resistance in breast cancer cells as MDR1 and MRP4 expression was markedly elevated in Dox-resistant cells while dramatically reduced when H19 was knocked down. Moreover, we found that CUL4A, an ubiquitin ligase component, was a critical factor bridging H19 lncRNA to MDR1 expression, and a high tumor CUL4A expression was associated with low survival in breast cancer patients treated with chemotherapy. These data suggest that H19 lncRNA plays a leading role in breast cancer chemoresistance, mediated mainly through a H19-CUL4A-ABCB1/MDR1 pathway. ABCB1; CUL4A; breast cancer; chemoresistance; lncRNA H19
24. We aimed to characterize the trends and projections of cancer mortalities in Yangpu, an industry restructuring district of Shanghai, China. Pubmed We aimed to characterize the trends and projections of cancer mortalities in Yangpu, an industry restructuring district of Shanghai, China. With high-quality data from the death registration system, the authors analyzed the trends in cancer mortalities during 1974-2014 and their relationship with pollution control and socioeconomic improvements. Cancer burden was projected into 2029. During 1974-2014, cancer death accounted for 28.80% of all-cause death. The 5 leading causes of cancer death were cancers of the lung & bronchus, stomach, liver, colon & rectum, and esophagus. Age-standardized mortality of all cancers was higher in men than in women (153.1/105vs. 88.8/105, p<0.001) and increased from 1974 to 1991 and decreased thereafter. The mortalities of cancers of the larynx, bladder, liver, nasopharynx, lung & bronchus, esophagus, lip oral & pharynx, stomach, kidney, and lymphoma were significantly higher in men than in women. Age-standardized mortalities of cancers of the esophagus, stomach, leukemia, female nasopharynx, female bladder, liver, and bone decreased especially after the 1990s, those of the colon & rectum, kidney, prostate, pancreas, breast, gallbladder, and ovary increased significantly. Lung cancer, breast cancer, colorectal cancer, and pancreas cancer in women and lung cancer, colorectal cancer, prostate cancer, and stomach cancer in men will be the leading causes of cancer death in 2025-2029. Cancer-caused life loss kept increasing since 2000. Conclusively, cancers associated with pollutions and infection decreased, especially after the 1990s, while those related to metabolic syndrome increased. These trends are related to closedown of polluted industries in the 1980s and lifestyle changes. age-standardized mortality; cancer-caused life loss; lifestyle; pollution
25. Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. Pubmed Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. 5-Fluorouracil (5-Fu) is the most important chemotherapeutic drug used for the treatment of CRC. However, resistance to 5-Fu therapies is a growing concern in CRC clinical practice recently. Andrographolide (Andro) is a main bioactive constituent of the herb Andrographis paniculata, which has various biological effects including anti-inflammation and antitumor activities. In the present study, we investigated the effects of combined Andro with 5-Fu against CRC HCT-116 cells. In vitro studies showed that Andro synergistically enhanced the anti-proliferation effect of 5-Fu on HCT-116 cells due to increased apoptotic cells. Meanwhile, results of the enzyme linked immunosorbent assay indicated that the level of phosphorylated cellular-mesenchymal to epithelial transition factor (p-MET) was decreased by the combination treatment. Further study suggested that Andro promoted the antitumor effect of 5-Fu by down-regulating the level of p-MET. In conclusion, these results confirmed the synergistic antitumor activity of Andro on CRC and provide evidence for possible clinical application of Andro for enhancing the antitumor effect of 5-Fu in CRC treatment. 5-Fu; Andro; HCT-116 cells; apoptosis; p-MET
26. BACKGROUND: Studies have shown an association of the UNC5D gene with kidney and bladder cancer and neuroblastoma. Pubmed BACKGROUND: Studies have shown an association of the UNC5D gene with kidney and bladder cancer and neuroblastoma. We investigated whether UNC5D acts as a tumor suppressor in papillary thyroid carcinoma (PTC). METHODS: Primary PTC tumors and matched normal thyroid tissues were obtained from 112 patients to detect UNC5D mRNA by real-time PCR. Genomic DNA sequencing was performed to detect BRAF mutation in PTC tumors. The association between UNC5D expression and clinicopathological data from PTC patients was reviewed retrospectively. PTC-derived cancer cell lines TPC-1 and K1 with stable transfection of UNC5D were used to investigate the functions of UNC5D. Flow cytometry, CCK-8, Transwell assay and scratch tests were used to examine cell cycle distribution, proliferation and migration. RESULTS: The expression of UNC5D was significantly decreased in PTC compared with adjacent normal thyroid tissues. Lower UNC5D expression was significantly associated with aggressive tumor behaviors, such as lymph node metastasis and BRAF mutation. Overexpression of UNC5D significantly suppressed malignant cell behaviors, including cell proliferation and migration, as well as tumor growth in vivo. CONCLUSIONS: These findings suggest a potential tumor suppressor role of UNC5D in PTC progression; and provide insight into potential clinical relevance for the prognosis of PTC. BRAF mutation; UNC5D; lymph node metastasis; papillary thyroid carcinoma; tumor-suppressive function


3D Tissue Models
About Us | Privacy Policy | Site Map | FAQs | Advertise With Us | Community
BiotechScienceNews.com promotes research and ranks life scientists working in the life science spectrum involving biotechnology,
drug discovery, genomics, microbiology, neuroscience, medicine, pharmacology, cell biology, and molecular biology.