View Profile


Peer Reviewed Papers, Books, Chapters

Year Title Citation Authors Review type Summary Keywords File filename File mime type
1. Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson's disease. Pubmed Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson's disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH) release when exposed to hydrogen peroxide (H₂O₂). The significantly-alleviated intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and lipoperoxidation of the cell membrane of PC-12 cells induced by H₂O₂ were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in PC-12 cells exposed to H₂O₂ were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress. Parkinson’s disease; antioxidant; oxidative stress; quercetin
2. BACKGROUND: To analyze the local distribution of pelvic recurrence after total mesorectal excision, with a view to simplifying the formulation of optimal individualized radiotherapy plans. Pubmed BACKGROUND: To analyze the local distribution of pelvic recurrence after total mesorectal excision, with a view to simplifying the formulation of optimal individualized radiotherapy plans. METHODS: We retrospectively investigated the data of 168 patients diagnosed with recurrent pelvic cancer treated at Fudan University Shanghai Cancer Center between January 2008 and December 2012. The following were collected depending on availability: operative report, histological report, specimen photographs, initial preoperative images, images confirming local recurrence, and clinical history. RESULTS: A total of 203 lesions of local recurrence were identified. The most common sites of pelvic recurrence were the mesorectum, including the anastomotic stoma in 53.0% of cases; presacral space in 27.4%, and pelvic floor and perineum in 21.4% the cases. Recurrence was most common in the lower pelvic region (i.e., below the upper border of the acetabulum), accounting for approximately 76.2% (128 cases) of cases. In patients with mid-rectal and distal rectal carcinoma. CONCLUSIONS: Patients with pelvic cancer may benefit by individualized treatment plans aimed at achieving a balance between tumor control and minimal risk of irradiation-induced toxicity. advanced rectal cancer; pelvic recurrence; radiation toxicity; radiotherapy; total mesorectal excision
3. Cancer-associated fibroblasts (CAF), a major component of the tumor microenvironment, play an important role in interacting with neoplastic cells to promote ovarian cancer progression. Pubmed Cancer-associated fibroblasts (CAF), a major component of the tumor microenvironment, play an important role in interacting with neoplastic cells to promote ovarian cancer progression. Exosomes are nano-sized vesicles that mediate the cross-talk between different cell types. An increasing number of studies have focused on the fact that tumor cell-derived exosomes influence stromal cells. However, the mechanism by which CAF-derived exosomes modulate cancer cells in ovarian cancer remains obscure. To investigate the role of CAF exosomes in ovarian cancer, we examined the exosomal content of paired primary, metastatic and normal fibroblasts from seven stage IIIC ovarian cancer patients by ELISA. We found that in ovarian CAF-derived exosomes, TGFβ1 was upregulated compared to normal omentum fibroblasts (NOF). Exosomes derived from CAF were taken up by ovarian SKOV-3 and CAOV-3 cell lines during co-culture and induced malignant behaviors in cancer cells, including an enhanced migration and invasion ability and the promotion of epithelial-mesenchymal transition (EMT) by activating the SMAD signaling pathway. Our results indicate that the role of TGFβ1 in CAF exosomes triggers ovarian cancer cells into a more aggressive phenotype, suggesting that targeting CAF exosomes could be a potential treatment in ovarian cancer. CAF; TGFβ1; epithelial-mesenchymal transition; exosomes; ovarian cancer
4. Pre-B-cell leukemia homeobox 3 (PBX3) is upregulated in various malignancies; however, the role of PBX3 in cervical cancer (CC) is unknown. Pubmed Pre-B-cell leukemia homeobox 3 (PBX3) is upregulated in various malignancies; however, the role of PBX3 in cervical cancer (CC) is unknown. The purpose of this study was to explore the expression characteristics, clinicopathological significance, and molecular biological function of PBX3 in CC. The expression levels of PBX3 were analyzed in CC cell lines and tumor specimens by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemical staining. The clinicopathological characteristics associated with PBX3 expression were evaluated. An RNA interference approach was employed to suppress PBX3 expression in CC in vitro and in vivo, determine its role in cell proliferation and analyze its molecular function. We found that PBX3 expression was significantly upregulated in CC cell lines and clinical specimens compared with normal cells and adjacent nontumorous cervical tissues. PBX3 was an independent predictive factor of poor prognosis, and its expression was correlated with tumor diameter, pathological grading, lymph node metastasis, invasion depth, vascular invasion, and clinical stage of CC. Multivariate analysis suggested that PBX3 expression may represent an independent prognostic indicator of the survival of CC patients. CC patients with high PBX3 expression exhibited reduced overall survival compared with those with low PBX3 expression. Additionally, stable downregulation of PBX3 expression in CC cell lines suppressed cell proliferation and decreased p-AKT protein expression levels in vitro. Similarly, in vivo assays demonstrated that PBX3 downregulation in CC cells markedly inhibited tumor size and weight. Overall, we demonstrated that PBX3 can promote CC cell proliferation via the AKT signaling pathway and that it may serve as a prognostic marker. Our data indicate that inactivation of PBX3 may be an effective clinical treatment for CC. AKT signaling pathway; RNA interference; cervical cancer; pre-B-cell leukemia homeobox 3; proliferation
5. Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. Pubmed Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations. BrdU; asymmetric division; cancer stem cells; lung; symmetric division
6. Combinatorial therapies that target multiple signaling pathways may provide improved therapeutic responses over monotherapies. Pubmed Combinatorial therapies that target multiple signaling pathways may provide improved therapeutic responses over monotherapies. Celecoxib and curcumol are two highly hydrophobic drugs which show bioavailability problems due to their poor aqueous solubility. In the present study, we evaluated the effects of celecoxib and curcumol alone and in combination on cell proliferation, invasion, migration, cell cycle and apoptosis induction in non-small cell lung cancer (NSCLC) cells using in vitro and in vivo experiments. Our data showed that the sensitivity of a combined therapy using low concentration of celecoxib and curcumol was higher than that of celecoxib or curcumol alone. Suppression of NF-κB transcriptional activity, activation of caspase-9/caspase-3, cell cycle G1 arrest, and inhibition of survival MAPK and PI3K/AKT signaling pathway contributed to the synergistic effects of this combination therapy for induction of apoptosis. Additionally, either celecoxib alone or in combination with curcumol inhibited NSCLC cell migration and invasion by suppressing FAK and matrix metalloproteinase-9 activities. Furthermore, the combined treatment reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. Our results confirm and provide mechanistic insights into the prominent anti-proliferative activities of celecoxib and/or curcumol on NSCLC cells, which provide a rationale for further detailed preclinical and potentially clinical studies of this combination for the therapy of lung cancer. apoptosis; celecoxib; curcumol; synergism; tumor metastasis
7. INTRODUCTION: A safe and effective in vivo siRNA delivery system is a prerequisite for liver tumor treatment based on siRNA cancer therapeutics. Pubmed INTRODUCTION: A safe and effective in vivo siRNA delivery system is a prerequisite for liver tumor treatment based on siRNA cancer therapeutics. Nanoparticles based on superparamagnetic iron oxide (SPIO) provide a promising delivery system. In this study, we aimed to explore a novel nanoparticle, which is composed of SPIO. MATERIALS AND METHODS: The particles have a core of iron oxide that is modified by galactose (Gal) and polyethylenimine (PEI), which act as shells, providing targeted delivery of therapeutic siRNA to the liver cancer. Gal-PEI-SPIO nanoparticles were synthesized, and the characteristics of the Gal-PEI-SPIO encapsulated with siRNA were analyzed. RESULTS: The particles remained nanoparticles and displayed negligible cytotoxicity when loaded with siRNA. In a serum stability assay, the Gal-PEI-SPIO nanoparticles could shield the siRNA from serum degradation and prolong the half-life of the siRNA in the system. Simultaneously, we found that the mixture could be efficiently taken up by Hepa1-6 cells in a flow cytometry assay. To study the anticancer effect, quantitative polymerase chain reaction and Western blotting were used to validate the silencing efficacy of the complexes in vitro. Subsequently, the nanoparticle mixtures were administered intravenously to tumor-bearing mice to explore the tissue distribution and the effect of the siRNA against cancer. We found that the nanoparticles could provide targeted siRNA delivery, accumulate easily in orthotopic tumors, enhance siRNA accumulation in the tumor tissues for 24 h and protect the siRNA from serum nuclease degradation in comparison with the control group. After these study procedures, the mice were sacrificed, and the tumors were removed to compare the tumor size and analyze the therapeutic effect on tumor growth. The tumor volume and the liver/body weight ratio were significantly reduced in the si-c-Met therapy groups. Additionally, the mRNA levels were also lower than those observed in the controls. CONCLUSION: Based on these results, we concluded that Gal-PEI-SPIO represents a promising and efficient platform for siRNA delivery in tumor therapy. Gal-PEI-SPIO; c-Met; hepatocellular carcinoma; nanoparticle; siRNA


3D Tissue Models
About Us | Privacy Policy | Site Map | FAQs | Advertise With Us | Community
BiotechScienceNews.com promotes research and ranks life scientists working in the life science spectrum involving biotechnology,
drug discovery, genomics, microbiology, neuroscience, medicine, pharmacology, cell biology, and molecular biology.